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AULT tolerance and reliability are important issues for flight vehicles such as aircraft, space-shuttles, and
satellites. A self-stabilizing system recovers automatically following disturbances that force the system to an

arbitrary state. The self-stabilization concept is an essential property of any autonomous control/computing system.
Important branches of distributed computing theory were initiated because of the need for fault-tolerance of

aircraft computing devices. The Byzantine fault model, for example, was a creation of the NASA SIFT project of
more than a couple of decades ago.9 The Byzantine fault model8 is an elegant abstraction of faults where it is
assumed that faulty parts behave as adversaries. The idea is to use redundancy—for instance, in the number of
processors—in order to overcome the behavior of faulty processors. This line of thinking fits the common practice
in engineering in which the design of critical parts is done independently by several design teams to make sure that
there is no mistake in the calculations. Analogously, in the Byzantine fault model, some processors are
simultaneously computing the same calculations for implementing a robust flight controller; thus the flight
controller can function well in spite of the faulty behavior of several of the processors. Faulty behavior cannot be
anticipated, the most severe behavior is therefore assumed—one that is reminiscent of the behavior of an adversary
in the Byzantine court, in which backstabbing was common.

A formal impossibility proof shows that, in order to ensure the correct behavior of the system, less than one-third
of the processors may be of the Byzantine type. The task examined is the agreement, or consensus, for which
processors need to decide on the same output, which is the input of one of the processors. The decision can be
viewed as choosing the common result among the results of the design teams in the engineering example. The
intuition behind the impossibility result is as follows: assume you have met two persons, Alice and Bob, one of
which is honest while the other is not. You may try to decide what to do by speaking with each of them. Because
you do not know which of the two is honest, you have to find this out. You may try a direct question to Alice asking
who among them is not honest; Alice will answer Bob, and Bob, if asked, will obviously answer Alice. Each of
them may also describe the conversations he/she had with the other, knowing that no one listened to the
communication between them. This symmetry in the weights of the answers of Alice and Bob make it impossible to
decide. It is possible to formally prove that agreement can be achieved if, and only if, less than one-third of the
processors are Byzantine (e.g. Ref. 7).

Systems that tolerate Byzantine faults are designed for flight devices, which need to be extremely robust. In such
a device, the assumptions made for reaching agreement can be violated: Is it reasonable to assume that, during any
period of the execution, less than one-third of the processors are faulty? What happens if, for a short period, more
than a third are faulty, or perhaps experience a weaker fault than a Byzantine fault (say, caused by a transient
electric spark)? What happens if messages sent by non-faulty processors are lost in one instant of time?

Seven years prior to the introduction of the Byzantine fault model, Edsger W. Dijkstra suggested an important
fundamental fault tolerance property called self-stabilization;2, 3 that is, to design the system as if there were no
(yesterday) past history—a system that can be started in any possible state of its state space. It would therefore not
be assumed that consistency was maintained from the fixed initial state by always executing steps according to the
program of the processors. Self-stabilizing systems thus overcome transient faults. Temporary violations of the
assumptions made by the algorithm designer can be viewed as leaving the system in an arbitrary initial state from
which the system resumes. Self-stabilizing systems work correctly when started in any initial system state. Thus,
even if the system loses its consistency due to an unexpected temporary violation of the assumptions made, it
converges to legal behavior once the assumptions start to hold again.

Self-stabilization is a strong fault tolerance property for systems; it ensures automatic recovery once faults stop
occurring. A self-stabilizing system is designed to start in any possible state where its components—e.g., processors,
processes, communication links, communication buffers—are in an arbitrary state; i.e., arbitrary variable values,
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arbitrary program counter. The designer assumes that at least some of the programs are executed and proves that,
under his/her assumptions of program execution, the system converges. Hence, there is no need to anticipate every
fault scenario and handle each scenario explicitly and independently. Designing a self-stabilizing system is therefore
safer (there are no forgotten scenarios) and simpler (there is no detailed recovery procedure for every scenario).
Once it is proven that the system stabilizes, the designer is standing on a solid ground: there is no need to worry
whether unexpected fault combinations will occur (see e.g. Ref. 10).

The research activity for designing self-stabilizing systems is very active e.g. Refs. 2, 11, 12. Other research
projects advocate the need for automatic recovery, and self-* properties such as: self-healing, self-adaptive, self-
organized.1,6 The focus of computer industry leaders is in autonomic computing.* These are indications for the
importance of knowing the self-stabilization paradigm and the techniques used for achieving the self-stabilization
property.

Dijkstra's first self-stabilizing algorithm is the best example of the paradigm. Consider a ring with n processors
p1, p2, ⋅⋅⋅, pn such that every processor can read the state of the previous processor; in particular, p1 reads the state of
pn. A desired behavior of the system is one in which there is always exactly one processor that can change its state.
One may propose an algorithm in which each processor has k = 2 states denoted by 0 and 1, and each processor
except p1 copies the state of the previous processor, p1 will change a state whenever the state of pn is identical to its
state; p1 will increment its state value by 1 modulo k.

When the system is started in a configuration in which the states of the processors are all zeroes, denoted {0, 0,
0, ⋅⋅⋅, 0}, then p1 is the only processor that can change a state and a system configuration {1, 0, 0, ⋅⋅⋅, 0} is reached.
Then p2 is the only processor that can change a state to reach {1, 1, 0, ⋅⋅⋅, 0}. Similarly the next processors are
privileged to change state one by one until the configuration {1, 1, 1, ⋅⋅⋅, 1} is reached where p1 is the one to change
its state to 0. Unfortunately, this simple algorithm is not self-stabilizing. Consider a ring with four processors that is
started in the following configuration {0, 1, 0, 0} where p1, p2, and p3 can change a state. An execution in which p3,
p2, p1, p4 take steps in this order results in {1, 0, 1, 1} which is the same as the first configuration up to replacing 0
by 1. Thus, there is an infinite execution that never converges to the desired behavior.

On the other hand, if each processor had k = n + 1 states, then the algorithm will stabilize. Stabilization is proved
by first observing that in any arbitrary configuration at least one state is missing; for example, in the configuration
{2, 0, 3, 4} the state 1 is missing. We then convince ourselves that in any infinite execution p1 changes state
infinitely often (assuming that, from some stage p1 does not change a state and showing that eventually every
processor including pn holds the state of p1 and that thereafter p1 must change a state). And last, we see that p1

changes states in a round robin fashion that ensures that p1 reaches the state that is missing in the arbitrary initial
configuration, thus enforcing a subsequent copy of this state by all the processors to reach a configuration in which
all the processors hold the same state. Once all the processors hold the same state, the convergence phase is over and
the closure of legal states is guaranteed analogously to the way the first non-stabilizing algorithm preserves
consistency.

The above may be viewed as a toy example, but the paradigm is far from being a toy. Self-stabilization is a very
important fundamental concept. Self-Stabilization is an essential property for microprocessors, operating systems,
and other basic and complicated components of computer systems.3, 4, 5

The implicit requirement for a formal proof is part of the definition of self-stabilization. In some cases, the
design is a proof-oriented design, where possible optimizations are eliminated for the sake of streamlining the proof.
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